
Debian Packaging
Matthew Palmer

mpalmer@debian.org

Debian Packaging – p. 1



Overview

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Interesting Problems in Packaging

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Interesting Problems in Packaging

Multiple Binary Packages

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Interesting Problems in Packaging

Multiple Binary Packages
Library Packages

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Interesting Problems in Packaging

Multiple Binary Packages
Library Packages
Patch Management

Debian Packaging – p. 2



Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Interesting Problems in Packaging

Multiple Binary Packages
Library Packages
Patch Management
The sid dilemma

Debian Packaging – p. 2



Binary Packages

Every .deb is actually an ar archive, containing data.tar.gz
(files for the filesystem), control.tar.gz (maintainer scripts and
other metadata), and debian-binary (containing the packaging
version, currently 2.0).
You can manually create or manipulate Debian packages using
standard Unix tools – one of the advantages of the format. Far
better, though, is to use the tools designed for the purpose...

dpkg --info x.deb – Package metadata

dpkg --contents x.deb – File listing

dpkg --unpack x.deb – Extract the package, but don’t run
the configure scripts

dpkg --install x.deb – Extract, configure, etc

dpkg --help – Lots and lots and lots of options

Debian Packaging – p. 3



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Debian Packaging – p. 4



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Debian Packaging – p. 4



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Source: the source package that the binary package was built
from.

Debian Packaging – p. 4



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Source: the source package that the binary package was built
from.

Version: Oddly enough, the version of the package. Usually
comprised of upstream version (portion before the hyphen) and
Debian version (portion after the hyphen).

Debian Packaging – p. 4



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Source: the source package that the binary package was built
from.

Version: Oddly enough, the version of the package. Usually
comprised of upstream version (portion before the hyphen) and
Debian version (portion after the hyphen).

Architecture: what CPU the package is built for.

Debian Packaging – p. 4



Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Source: the source package that the binary package was built
from.

Version: Oddly enough, the version of the package. Usually
comprised of upstream version (portion before the hyphen) and
Debian version (portion after the hyphen).

Architecture: what CPU the package is built for.

Depends, Recommends, Suggests, Replaces,
Conflicts, Enhances: Fields describing various
relationships with other packages.

Debian Packaging – p. 4



Maintainer Scripts

The package installation and removal scripts. Typically written in
Bourne Shell or Perl, they perform any required configuration and
deconfiguration on package installation and removal. The four
standard scripts are preinst, postinst, prerm, and postrm.
There is also a debconf pre-installation script, called config, which
is supposed to ask the user all sorts of questions, whose answers
are used in the other maintainer scripts.

Debian Packaging – p. 5



Installation Flow

(See also Chapter 6 of Debian Policy)

Debian Packaging – p. 6



Source Packages

Debian Packaging – p. 7



Source Packages

The overall control file is the .dsc – a description of the source
package and appropriate fields to describe build parameters.

Debian Packaging – p. 7



Source Packages

The overall control file is the .dsc – a description of the source
package and appropriate fields to describe build parameters.

Usually an .orig.tar.gz, which should be the original
source code as provided by upstream, or close to it; and a
.diff.gz which contains all of the changes to the upstream
source made for Debian.

Debian Packaging – p. 7



Source Packages

The overall control file is the .dsc – a description of the source
package and appropriate fields to describe build parameters.

Usually an .orig.tar.gz, which should be the original
source code as provided by upstream, or close to it; and a
.diff.gz which contains all of the changes to the upstream
source made for Debian.

“Native” packages have no orig and diff split, but simply put
everything into a single tarball. Do not use this package format
for most packages.

Debian Packaging – p. 7



A Package Diagram

Debian Packaging – p. 8



A source package unpacked

Most of the changes in a "Debianised" source package are localised
in the debian directory. This directory contains the files which
control both how the package gets built, what the binary packages
are called, and the maintainer scripts used during binary package
installation.
Other changes are often needed to source packages, to make them
policy conformant or to fix bugs, but these should be minimised by
passing changes upstream for integration.

Debian Packaging – p. 9



debian/rules

It sure does!

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

configure Does any necessary pre-build configuration, like
running ./configure with appropriate options. (optional)

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

configure Does any necessary pre-build configuration, like
running ./configure with appropriate options. (optional)

build compiles the package from source. (required)

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

configure Does any necessary pre-build configuration, like
running ./configure with appropriate options. (optional)

build compiles the package from source. (required)

install copies/moves files from where they were placed
when built into the installation tree. (optional)

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

configure Does any necessary pre-build configuration, like
running ./configure with appropriate options. (optional)

build compiles the package from source. (required)

install copies/moves files from where they were placed
when built into the installation tree. (optional)

binary, binary-arch, and binary-indep create the binary
packages. binary typically invokes binary-arch and
binary-indep indirectly.

Debian Packaging – p. 10



debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.

configure Does any necessary pre-build configuration, like
running ./configure with appropriate options. (optional)

build compiles the package from source. (required)

install copies/moves files from where they were placed
when built into the installation tree. (optional)

binary, binary-arch, and binary-indep create the binary
packages. binary typically invokes binary-arch and
binary-indep indirectly.

clean returns the package to it’s original (pre-build) state.

Debian Packaging – p. 10



debian/control

This file describes the source package and all binary packages,
including their section, architecture, and build and installation
dependencies and conflicts.

Debian Packaging – p. 11



The .changes file

This is an important file, mainly used for the upload stage of
package development. It describes the changes represented by a
given version of a package – the package affected, files supplied,
version, bugs closed, the maintainer, the uploader, and so on.
Primarily used by the upload queue processing software, but also
useful as a summary of ongoing development.

Debian Packaging – p. 12



Building a package

Debian Packaging – p. 13



Building a package

The minimum requirement is that the binary target of
debian/rules produce the binary packages specified in
debian/control. So, in principle, all that someone needs to do is
change into the root of the package source tree and run
debian/rules binary as root.

Debian Packaging – p. 13



Building a package

The minimum requirement is that the binary target of
debian/rules produce the binary packages specified in
debian/control. So, in principle, all that someone needs to do is
change into the root of the package source tree and run
debian/rules binary as root.
How exactly the package is built is left up to the package maintainer
when writing the rules file. So, you can have a lot of shell script
fragments doing sick and twisted things to produce a package.

Debian Packaging – p. 13



Building a package

The minimum requirement is that the binary target of
debian/rules produce the binary packages specified in
debian/control. So, in principle, all that someone needs to do is
change into the root of the package source tree and run
debian/rules binary as root.
How exactly the package is built is left up to the package maintainer
when writing the rules file. So, you can have a lot of shell script
fragments doing sick and twisted things to produce a package.
There are, however, several much better ways of writing
debian/rules files.

Debian Packaging – p. 13



Building a package

The minimum requirement is that the binary target of
debian/rules produce the binary packages specified in
debian/control. So, in principle, all that someone needs to do is
change into the root of the package source tree and run
debian/rules binary as root.
How exactly the package is built is left up to the package maintainer
when writing the rules file. So, you can have a lot of shell script
fragments doing sick and twisted things to produce a package.
There are, however, several much better ways of writing
debian/rules files.
A security note: the fakeroot program (from the fakeroot
package) can be used to simulate operations requiring root
privileges.

Debian Packaging – p. 13



Helpers and their Usefulness

The most commonly used build help system is debhelper, in the
package of the same name and documented in debhelper(7) and
the great many dh * commands available.
Each dh script performs a particular small, well defined action,
such as “install files related to init scripts” and “create defined
symlinks”. You can assemble a list of appropriate dh scripts to suit
your particular package.
Config files for debhelper scripts are kept in the debian/ directory,
and their use is described in the relevant dh manpage.

Debian Packaging – p. 14



Automatic Packaging

dh make (package: dh-make) is often used as an initial packaging
tool. It creates a debian/ directory full of useful examples and
almost-ready-to-go scripts. It is an excellent starting point for most
debianisation efforts.
dh-make-perl and dh-make-php are dh make alternatives tuned
for the particular requirements of packaging Perl modules and
PEAR/PECL modules, respectively.

Debian Packaging – p. 15



More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

Debian Packaging – p. 16



More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

dpatch;

Debian Packaging – p. 16



More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

dpatch;

dbs;

Debian Packaging – p. 16



More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

dpatch;

dbs;

cdbs.

Debian Packaging – p. 16



More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

dpatch;

dbs;

cdbs.

And probably several others I’ve forgotten or don’t know about.

Debian Packaging – p. 16



Build-time Helpers

When it comes time to run the build scripts, there are several very
useful scripts you can use to automate part or all of the larger build
process – the debian/rules binary call, and associated
scaffolding.

Debian Packaging – p. 17



Build-time Helpers

When it comes time to run the build scripts, there are several very
useful scripts you can use to automate part or all of the larger build
process – the debian/rules binary call, and associated
scaffolding.

dpkg-buildpackage – Cleans the source, builds the binary
packages, build description (.dsc) and .changes files, and
(by default) signs the package ready for upload.

Debian Packaging – p. 17



Build-time Helpers

When it comes time to run the build scripts, there are several very
useful scripts you can use to automate part or all of the larger build
process – the debian/rules binary call, and associated
scaffolding.

dpkg-buildpackage – Cleans the source, builds the binary
packages, build description (.dsc) and .changes files, and
(by default) signs the package ready for upload.

debuild – Wraps dpkg-buildpackage, adding extra useful
bits like automatic lintian/linda checks.

Debian Packaging – p. 17



Build-time Helpers

When it comes time to run the build scripts, there are several very
useful scripts you can use to automate part or all of the larger build
process – the debian/rules binary call, and associated
scaffolding.

dpkg-buildpackage – Cleans the source, builds the binary
packages, build description (.dsc) and .changes files, and
(by default) signs the package ready for upload.

debuild – Wraps dpkg-buildpackage, adding extra useful
bits like automatic lintian/linda checks.

pbuilder – Builds a package in a clean chroot environment.

Debian Packaging – p. 17



Build-time Helpers

When it comes time to run the build scripts, there are several very
useful scripts you can use to automate part or all of the larger build
process – the debian/rules binary call, and associated
scaffolding.

dpkg-buildpackage – Cleans the source, builds the binary
packages, build description (.dsc) and .changes files, and
(by default) signs the package ready for upload.

debuild – Wraps dpkg-buildpackage, adding extra useful
bits like automatic lintian/linda checks.

pbuilder – Builds a package in a clean chroot environment.

cvs-buildpackage – Pulls a debian release out of CVS and
automatically builds it. There are also analogous
svn-buildpackage and tla-buildpackage scripts.

Debian Packaging – p. 17



Multiple Binary Packages

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

The binary-arch and binary-indep targets must build the
relevant packages.

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

The binary-arch and binary-indep targets must build the
relevant packages.

debhelper scripts should be given the -a (act on all
arch-specific packages) or -i (act on all arch-independent
package) options, and any debhelper control files should have
the bianry package name prepended.

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

The binary-arch and binary-indep targets must build the
relevant packages.

debhelper scripts should be given the -a (act on all
arch-specific packages) or -i (act on all arch-independent
package) options, and any debhelper control files should have
the bianry package name prepended.

Files for each binary package should be placed in
debian/[packagename]. Two ways to do this:

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

The binary-arch and binary-indep targets must build the
relevant packages.

debhelper scripts should be given the -a (act on all
arch-specific packages) or -i (act on all arch-independent
package) options, and any debhelper control files should have
the bianry package name prepended.

Files for each binary package should be placed in
debian/[packagename]. Two ways to do this:

1. Have the install target install into debian/tmp and then
use either dh movefiles or dh install put the files into
the relevant package-specific directories; or

Debian Packaging – p. 18



Multiple Binary Packages

Each binary package must have it’s own stanza in the
debian/control file.

The binary-arch and binary-indep targets must build the
relevant packages.

debhelper scripts should be given the -a (act on all
arch-specific packages) or -i (act on all arch-independent
package) options, and any debhelper control files should have
the bianry package name prepended.

Files for each binary package should be placed in
debian/[packagename]. Two ways to do this:

1. Have the install target install into debian/tmp and then
use either dh movefiles or dh install put the files into
the relevant package-specific directories; or

2. Copy the files in manually, either directly or via
debian/tmp.

Debian Packaging – p. 18



Library Packaging

Debian Packaging – p. 19



Library Packaging

Multiple packages, with some added spice.

Debian Packaging – p. 19



Library Packaging

Multiple packages, with some added spice.

Primary package named lib[name][ver], contains the
shared object, a shlibs control file, and a postinst that
invokes ldconfig at the configure stage.

Debian Packaging – p. 19



Library Packaging

Multiple packages, with some added spice.

Primary package named lib[name][ver], contains the
shared object, a shlibs control file, and a postinst that
invokes ldconfig at the configure stage.

Development package, usually named lib[name]-dev, with a
static version of the library, headers, development manpages,
and a .so symlink.

Debian Packaging – p. 19



Patch Management

Debian Packaging – p. 20



Patch Management

Modify debian/rules to support dpatch (see the DPATCH IN
DEBIAN PACKAGES section of dpatch(7));

Debian Packaging – p. 20



Patch Management

Modify debian/rules to support dpatch (see the DPATCH IN
DEBIAN PACKAGES section of dpatch(7));

Place patches in debian/patches (it’s not just a straight diff;
there is a shell script fragment that gets prepended, see
/u/s/d/dpatch/examples/sample.00template.gz);

Debian Packaging – p. 20



Patch Management

Modify debian/rules to support dpatch (see the DPATCH IN
DEBIAN PACKAGES section of dpatch(7));

Place patches in debian/patches (it’s not just a straight diff;
there is a shell script fragment that gets prepended, see
/u/s/d/dpatch/examples/sample.00template.gz);

List patches to apply in debian/patches/00list; and

Debian Packaging – p. 20



Patch Management

Modify debian/rules to support dpatch (see the DPATCH IN
DEBIAN PACKAGES section of dpatch(7));

Place patches in debian/patches (it’s not just a straight diff;
there is a shell script fragment that gets prepended, see
/u/s/d/dpatch/examples/sample.00template.gz);

List patches to apply in debian/patches/00list; and

Tally Ho!

Debian Packaging – p. 20



The sid dilemma

You don’t want to run sid on your workstation, but you need to build
your packages in sid before uploading them. Or, you’re running sid
on your workstation but need to backport some packages to work on
your woody-based server. Oh, the humanity!

Debian Packaging – p. 21



The sid dilemma

You don’t want to run sid on your workstation, but you need to build
your packages in sid before uploading them. Or, you’re running sid
on your workstation but need to backport some packages to work on
your woody-based server. Oh, the humanity!
pbuilder to the rescue! Takes a source package description and
runs the build process in a pre-built chroot of whatever release you
wish to target.

Debian Packaging – p. 21



Calling pbuilder

Create the chroot: pbuilder create --basetgz
/var/chroots/woody.tgz --distribution woody

Debian Packaging – p. 22



Calling pbuilder

Create the chroot: pbuilder create --basetgz
/var/chroots/woody.tgz --distribution woody

Build your package in the chroot: pbuilder build
--basetgz /var/chroots/woody.tgz
mypackage 1.1-1.dsc --buildresult ‘pwd‘

Debian Packaging – p. 22



Calling pbuilder

Create the chroot: pbuilder create --basetgz
/var/chroots/woody.tgz --distribution woody

Build your package in the chroot: pbuilder build
--basetgz /var/chroots/woody.tgz
mypackage 1.1-1.dsc --buildresult ‘pwd‘

Periodically, you should update your chroot (especially
important when building for sid): pbuilder update
--basetgz /var/chroots/woody.tgz

Debian Packaging – p. 22



Packages of Interest

Documentation: maint-guide, developers-reference,
debian-policy, build-essential

debian/rules helpers: debhelper, dpatch, cbs, cdbs

Build-time helpers: devscripts, dpkg-dev,
{cvs,svn,tla}-buildpackage, pbuilder, fakeroot

Packaging templates: dh-make, dh-make-perl, dh-make-php

Quality Checks: lintian, linda

Debian Packaging – p. 23



Acknowledgements

“If I have packaged farther, it is because I have hacked on the
shoulders of giants.”

Brown Brothers, for a very nice Port to sip while preparing
slides.

Meat Loaf, for the best possible hacking music.

My employer for letting my hack on both Debian and these
slides on company time.

Debian Packaging – p. 24


	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview

	Binary Packages
	Package Metadata
	Package Metadata
	Package Metadata
	Package Metadata
	Package Metadata
	Package Metadata

	Maintainer Scripts
	Installation Flow
	Source Packages
	Source Packages
	Source Packages
	Source Packages

	A Package Diagram
	A source package unpacked
		t debian/rules
		t debian/rules
		t debian/rules
		t debian/rules
		t debian/rules
		t debian/rules
		t debian/rules

		t debian/control
	The {	t .changes} file
	Building a package
	Building a package
	Building a package
	Building a package
	Building a package

	Helpers and their Usefulness
	Automatic Packaging
	More Advanced Helpers
	More Advanced Helpers
	More Advanced Helpers
	More Advanced Helpers
	More Advanced Helpers

	Build-time Helpers
	Build-time Helpers
	Build-time Helpers
	Build-time Helpers
	Build-time Helpers

	Multiple Binary Packages
	Multiple Binary Packages
	Multiple Binary Packages
	Multiple Binary Packages
	Multiple Binary Packages
	Multiple Binary Packages
	Multiple Binary Packages

	Library Packaging
	Library Packaging
	Library Packaging
	Library Packaging

	Patch Management
	Patch Management
	Patch Management
	Patch Management
	Patch Management

	The sid dilemma
	The sid dilemma

	Calling {	t pbuilder}
	Calling {	t pbuilder}
	Calling {	t pbuilder}

	Packages of Interest
	Acknowledgements

