
Debian Packaging
Matthew Palmer

mpalmer@debian.org

Debian Packaging – p. 1

Overview

Structure of Binary Packages

Structure of Source Packages

Turning one into the other

Supporting Multiple Distributions

Debian Packaging – p. 2

Binary Packages

Every .deb is actually an ar archive, containing data.tar.gz
(files for the filesystem), control.tar.gz (maintainer scripts and
other metadata), and debian-binary (containing the packaging
version, currently 2.0).
You can manually create or manipulate Debian packages using
standard Unix tools – one of the major advantages of the format.
Far better, though, is to use the tools designed for the purpose...

dpkg --info x.deb – Package metadata

dpkg --contents x.deb – File listing

dpkg --unpack x.deb – Extract the package, but don’t run
the configure scripts

dpkg --install x.deb – Extract, configure, etc

Debian Packaging – p. 3

Package Metadata

Binary packages have several pieces of metadata associated with
them, viewable with dpkg --info. Of particular interest:

Package: the actual package name. The filename of the
package is totally unimportant.

Version: Oddly enough, the version of the package. Usually
comprised of upstream version (portion before the hyphen) and
Debian version (portion after the hyphen).

Architecture: ’nuff said.

Depends, Recommends, Suggests, Replaces,
Conflicts, Enhances: Fields describing various
relationships with other packages.

Debian Packaging – p. 4



Source Packages

The overall control file is the .dsc – a description of the source
package and appropriate fields to describe build parameters.

Usually an .orig.tar.gz, which should be the original
source code as provided by upstream, or close to it; and a
.diff.gz which contains all of the changes to the upstream
source made for Debian.

“Native” packages have no orig and diff split, but simply put
everything into a single tarball. Do not use this package format
for most packages.

Debian Packaging – p. 5

A Package Diagram

Debian Packaging – p. 6

A source package unpacked

Most of the changes in a "Debianised" source package are localised
in the debian directory. This directory contains the files which
control both how the package gets built, what the binary packages
are called, and the maintainer scripts used during binary package
installation.
Other changes are often needed to source packages, to make them
policy conformant or to fix bugs, but these should be minimised by
passing changes upstream for integration.

Debian Packaging – p. 7

debian/rules

It sure does!
More specifically, debian/rules is the file which controls how a
Debian package is built. It is typically a makefile, defining several
targets, corresponding to the various stages of the build process.
Some of these are required by policy to be present, although they
may do nothing:

build compiles the package

binary, binary-arch, and binary-indep create the binary
packages. binary typically invokes binary-arch and
binary-indep.

clean returns the package to it’s original (pre-build) state.

Debian Packaging – p. 8



debian/control

This file describes the source package and all binary packages,
including their section, architecture, and build and installation
dependencies and conflicts.

Debian Packaging – p. 9

The .changes file

This is an important file, but only for the upload stage of package
development. It describes the changes represented by a given
upload – the package affected, files supplied, version, bugs closed,
the maintainer, the uploader, and so on.

Debian Packaging – p. 10

Maintainer Scripts

The package installation and removal scripts. Typically written in
Bourne Shell or Perl, they perform any required configuration and
deconfiguration on package installation and removal. The four
standard scripts are preinst, postinst, prerm, and postrm.
There is also a debconf pre-installation script, called config, which
is supposed to ask the user all sorts of questions, whose answers
are used in the other maintainer scripts.

Debian Packaging – p. 11

Building a package

The minimum requirement is that the binary target of
debian/rules produce the binary packages specified in
debian/control. So, in principle, all that someone needs to do is
change into the root of the package source tree and run
debian/rules binary.
How exactly the package is built is left up to the package maintainer
when writing the rules file. So, you can have a lot of shell script
fragments doing sick and twisted things to produce a package.
There are, however, several much better ways of writing
debian/rules files.

Debian Packaging – p. 12



Helpers and their Usefulness

The most commonly used build help system is debhelper, in the
package of the same name and documented in debhelper(7) and
the great many dh * commands available.
Each dh script performs a particular small, well defined action,
such as “install files related to init scripts” and “create defined
symlinks”. You can assemble the appropriate dh scripts to suit your
particular package.

Debian Packaging – p. 13

Automatic Packaging

dh make (package: dh-make) is often used as an initial packaging
tool. It creates a debian/ directory full of useful examples and
almost-ready-to-go scripts. It is an excellent starting point for most
debianisation efforts.
dh-make-perl and dh-make-php (I think that’s the name of the
package, anyway) are dh make alternatives tuned for the particular
requirements of packaging Perl modules and PEAR/PECL modules,
respectively.

Debian Packaging – p. 14

More Advanced Helpers

In the spirit of Free Software, there are several advanced build
helpers:

dpatch;

dbs;

cdbs.

And probably several others I’ve forgotten.

Debian Packaging – p. 15

Build Helpers

On the package building side, there are several very useful scripts
you can use to automate part or all of the build process – the
debian/rules binary call, and associated scaffolding.

dpkg-buildpackage – Cleans the source, builds the binary
packages, build description (.dsc) and .changes files, and
(by default) signs the package ready for upload.

debuild – Wraps dpkg-buildpackage, adding extra useful
bits like automatic lintian/linda checks.

pbuilder – Builds a package in a clean chroot environment.

cvs-buildpackage – Pulls a debian release out of CVS and
automatically builds it. There is also an analogous
svn-buildpackage (and probably a tla-buildpackage by
now, too).

Debian Packaging – p. 16



The sid dilemma

You don’t want to run sid on your workstation, but you need to build
your packages in sid before uploading them. Or, you’re running sid
on your workstation but need to backport some packages to work on
your woody-based server. Oh, the humanity!
pbuilder to the rescue! Takes a source package description and
runs the build process in a pre-built chroot of whatever release you
wish to target.

Debian Packaging – p. 17

Calling pbuilder

Create the chroot: pbuilder create --basetgz
/var/chroots/woody.tgz --distribution woody

Build your package in the chroot: pbuilder build
--basetgz /var/chroots/woody.tgz
mypackage 1.1-1.dsc --buildresult ‘pwd‘

Periodically, you should update your chroot (especially
important when building for sid): pbuilder update
--basetgz /var/chroots/woody.tgz

Debian Packaging – p. 18

Packages of Interest

dh-make

devscripts

debhelper

lintian

linda

dpkg-dev

pbuilder

build-essential

Debian Packaging – p. 19


	Overview
	Binary Packages
	Package Metadata
	Source Packages
	A Package Diagram
	A source package unpacked
		t debian/rules
		t debian/control
	The {	t .changes} file
	Maintainer Scripts
	Building a package
	Helpers and their Usefulness
	Automatic Packaging
	More Advanced Helpers
	Build Helpers
	The sid dilemma
	Calling {	t pbuilder}
	Packages of Interest

